טכניון – מכון טכנולוגי לישראל הפקולטה להנדסת אווירונאוטיקה וחלל

Multi Operational National Guard

Critical Design Review 05.07.06

Content

- 1. Introduction
- 2. Specs and customer requirements
- 3. Flight performance
- 4. UAV component detailed design
- 5. Load and stress analysis
- 6. Systems general arrangement
- 7. Specific issues
- 8. Airborne model
- 9. Summary

1. Introduction

Artzi Dror- Project supervisor

Project Members: Dagan Dori

- Dagan Yuval
- Desyatkov Anat
- Edelman Andrey
- Eitan Shani
- Eliyahu Zohar
- Farbman Ido
- Mendel Shaked Roni
- Rosentzvit Leonid

Intro

Operational need

- The need for accurate, fast and online information is rapidly growing.
- 1. Controlling sensitive areas.
- 2. Controlling areas that are hard to reach.
- 3. Security and intelligence need.

Out of this need emerged the solution : The MONGUARD (Multi Operational National Guard).

What've been done

What've been done This semester

- Structural design and analysis of aerodynamic surfaces.
- Aerodynamic analysis of wings/canard.

Fuselage detailed design :

- Wings joint
- Sensors doors opening mechanism
- □ Service panels
- Cowling + NACA Scoop
- Reinforcements

What've been done This semester

- Specific Issues :
 - Engine noise reduction
 - □ Alternatives for GPS
 - □ Thrown Appliances
- Design and Building of a flying Model
 Examination of building a wind tunnel model.

2. Specs and Customer Requirements

UAV specification

- Max. Take Off Weight 50 kg
- Payload Weight 20 kg
- Operational Endurance 10 hr
- Max. Flight Level 10,000 ft
- Canister Launched Capability
- Precision Para foil Recovery
- Day and Night monitoring capabilities
- velocity: Min. 40 Kt ;Cruise 60 Kt ;Max. 90 Kt
- Low acoustic signature
- Multi-functional component

Mission Profile

Our solution:

- Our solution is UAV with canard configuration
- The specifications: Endurance: 6.5 hr Weight: 50 kg
- The UAV will be equipped with 2 cameras
- Person identification capability from 2500ft
- Vehicle identification capability from 5000ft
- Fit for various ground and aerial vehicles.

ICD-Unfolded

ICD-Folded

3. Flight Performance

Power Requirements

Required Power

Assumptions : L/D=10 Propeller efficiency 0.7

Climb Rate

Climbing rate 1000ft/min -SL

$$\eta = 0.7 \Longrightarrow P_{eng} = 6076.6_{watt} = 8.15_{HP}$$

Climbing rate 600ft/min

 $P_{eng}\eta = 3258 \quad (SL)$ $\frac{\rho}{\rho_0} = 0.9151 \quad (3000 \, ft)$ $P_{rated} = 5106.5_{watt} = 6.84_{HP}$ $\frac{\rho}{\rho_0} = 0.8107 \quad (6000 \, ft)$ $P_{eng} = 5826_{watt} = 7.8_{HP}$

Climb rate at sea level & 2,000 ft

Horizontal velocity of 70 knts Propeller eff.=0.7 AR=11 Cd0=0.05 17

Available, Required and Excess Power Vs. Velocity

Loiter Performance

Engine efficiency is 0.7

Beginning of the endurance at 48 kg and ending at 37 kg (11 kg were consumed)

SFC =0.673 kg/hr/HP SFC =1 kg/hr/HP Safety factor = 1.5

Horizontal Turn Performance

Radius of turn vs. load factor_

We can obtain radius of 150[m] at n=2, at velocity of 50knts (loitering). At cruise velocity ,n has to be 2.5 , so the radius will remain 150m.

 $R = \frac{V^2}{g}\sqrt{n^2 - 1}$

V-N Diagram

Load factor: Nmax= 2.5 Nmin= -1.5

Mission Profile Calculations

Endurance ,at constant velocity

 $E = \frac{\eta}{SFC} \frac{1}{V} \frac{C_L}{C_D} \ln\left(\frac{W_0}{W_1}\right)$

$$SFC = SFC_{manufacturer} \cdot n = 0.673 \cdot 1.5 = 1 \frac{kg / hr}{HP}$$

Fuel Reserve at the end = 0.5kg

State	Time [min]	P _{eng} [HP]	FF [kg/hr]	Fuel Weight [kg]	Horizontal Velocity [knts]	Climb Rate [ft/min]	Range [km]
Climbing	9	6.8	6.8	1	70	600	19
Cruising 1	11	3.4	3.4	0.7	60	\odot	21
Gliding	8	0	0	0.01	60	0	10
Loitering	330 (5.5 hr)	2.3	2.3	11	50	\odot	3
Climbing	13	6.5	6.7	1.4	70	600	27
Cruising 2	13	2.8	2.8	0.5	60	0	23
Total	6.5[hr]			14. 5[kg]			100[km]

Airfoil Selection

Requirements:

- Minimal drag
- Low Reynolds numbers
- Thick profile
- Big camber
- Low speed

Airfoil	Cd min	CI max	Alpha max [deg]	Thickness	Camber	Reynolds
S8052	0.008	1.2	10	0.12	0.016	402000
Selig S8037	0.01	1.3	13	0.16	0.026	502000
SD 7062	0.012	1.7	10	0.14	0.04	401000
S8036	0.009	1.2	13	0.16	0.018	503000
E472	0.009	1.3	14	0.12	0	510000
FX63137	0.011	1.6	10	0.14	0.06	308600
FX76 MP140	0.01	1.7	10	0.1411	0.0707	500000
SG6040	0.014	1.05	10	0.16	0.025	500300

 $(\mathrm{Re} = 4 \cdot 10^5 \div 6 \cdot 10^5)$

The Chosen Airfoil For The Wing And The Canard is SD7062

Aerodynamic Numeric Calculation

 Lift distribution on wing – canard configuration using VLM - Vortex Lattice Method.

Airfoil lift calculation using Vortex Distribution method.

Theoretical Lift Coefficient

Assuming flat aerodynamic surfaces and neglecting mutual wing-canard interferences.

$$C_{L} = C_{L \ canard} + C_{L \ wing} = \left(C_{L\alpha \ canard} + C_{L\alpha \ wing}\right)\alpha$$

$$C_{L\alpha \ Theory} = C_{L\alpha \ canard} + C_{L\alpha \ wing} = \frac{2\pi}{1 + \frac{2}{AR_{canard}}} + \frac{2\pi}{1 + \frac{2}{AR_{wing}}}$$

$$AR = \frac{b^{2}}{s} = \frac{b}{c} \qquad AR_{canard} = \frac{2}{0.3} = 6.667 \qquad AR_{wing} = \frac{3.3}{0.3} = 11$$

$$C_{L\alpha \ Theory} = 10.15 \qquad C_{L\alpha \ VLM} = 6.026 = 0.69C_{L\alpha \ Theory}$$
The canard decreases wing lift by 30%

Cp Distribution

SD 7062 Airfoil Calculations

Lift Line Of SD7062

Calculated

Experimental

Pressure Distribution On SD7062

Effect Of Another Airfoil On Lift Line Calculation

Updated Flight Performance According To New Lift Coefficients

Airfoil experimental Cl.

Finite wing VLM calculated CI. (with canard effect)

Airfoil 'Wing theory' calculation. (with canard effect)

Endurance

34

Power

V-N Diagram

Pitch Rate (ⁱ/₎

37

4. UAV Component Detailed Design

The components

Fuselage

- Camera door opening mechanism
- Service panels
- Cowling + NACA Scoop
- Reinforcements
- Wing structure
- Wing / Canard opening mechanism
- Canister

The Fuselage

The Fuselage

Camera withdrawal mechanism

Camera and door withdrawal mechanism

Service Panels

Cowling With NACA Scoop

Wing Structural Design

- First, a conventional design was performed.
- The result was a heavy wing (8.5 kg) which could bear greater loads than the maximum load applied on the UAV.

It was decided to build aluminum extruded surfaces with thin spars.

Wing – half span

Wing/Canard Opening Mechanism

It is necessary to design a pivot for this mechanism.

The Canister

5. Load and Stress Analysis

Wing Structural Analysis

- The analysis was performed using FEM (Finite Elements Method) program, called COSMOS.
- Shell modeled wing. (more accurate for thin bodies than 3D elements)
- The wing is fixed at the root with 6 DOF.
- It is subjected to explicit pressure with the spatial shape of a second degree polynomial :

 $P(x) = -7.6289 \cdot 10^{-10} x^2 + 0.001833$

FEM Analysis Stress

Model name: wing_SD7062_surf_analysis Study name: Struct_surf Plot type: Static nodal stress (Top) Plot1 Deformation scale: 5.76352

Canister Structural Analysis

Model name: Canister_No_doors_Ido Study name: Static_Element Plot type: Static nodal stress Plot1 Deformation scale: 0.1

von Mises (N/m*2) 1.625e+008 1.490e+008 1.355e+008 1.219e+008 1.084e+008 9.483e+007 6.775e+007 6.775e+007 4.067e+007 2.713e+007 1.359e+007 4.392e+004

Body Structural Analysis

Fixed at engine

concentrated force at nose = body weight X 2.5

Model name: body2 Study name: Static_Shells Plot type: Static nodal stress (Top) Plot1 Deformation scale: 2.80204

6. Systems General Arrangement

Component Integration

Wing opened UAV section

Folded UAV

System Arrangement

Components weights

item	Weight [gr]	position [mm]
body	3629	1209
fwd camera	1256	82
battery pack	2635	241
fwd fuel	8059	541
fwd air bag	78	900
parashoot	214	850
canard saddle	1160	1031
canard	3882	1077
wing saddle	1128	2144
wing	5546	2190
wing tips	863	2211
rear camera	1519	1044
appliances	6607	1639
avionics	218	1860
rear air bag	78	1940
rear fuel	8245	2183
engine	2870	2454
Contingency	2000	cg

Total weight 50 [kg]

Purchased Components

- Cameras
- Batteries
- Air bag
- Parachute
- Avionics

D-Stamp

Piccolo II

DA-100

The engine: DA-100

DA-100 Specifications:

- **Displacement:** 6.1 ci. (100cc)
- Output: 9.8 hp
- **Recommended Props**: 2-blade: 26x12, 27x10, 28x10. 3-blade: 24x12, 25x12, 26x12.
- Weight: 5.8 lbs (2.63 kilos)
- Length: 6.5" (162.5mm)
- Width: 11.45" (290.8mm) (w/ plug caps)
- **Bore**: 1.6771" (42.6mm)
- **Stroke**: 1.3779" (35mm)
- **Typical RPM**: 1,000 to 6,700 8,500 max RPM
- **Fuel Draw**: 2.5 oz/min at 6,000 RPM.

Provides the needed Power.

- Light weighted.
- Known as reliable.

The Autopilot: Piccolo II

Complete integrated avionics system for small UAVs.

- Includes avionics hardware and software and groundstation hardware and software.
- A secondary payload serial port.
- Volume: 4.8" x 2.4" x1.5"
 Weight: 212 gr (max)

The cameras: D-Stamp (d/n) (CONTROP)

	D-stamp	D-stamp
100	night	day
weight	950 gr	750 gr
dimensions	125x160(l)	125x160(l)
pitch	+70 to -40°	+70 to -40°
zoom		X10
Field of view	14x10.5 °	5.2x4.2 °
		38x48 °
Altitude	<3000 ft	3,000 ft

7. Specific Issues

UAV noise reduction

Alternatives for GPS

Thrown appliances

Noise in UAVs and its reduction

The sources of noise in an airplane?

- The propeller
- The engine
- Aerodynamic noise

Why should noise bother us?

Alerts the enemy and draws attention.
Interferes with the work of equipment placed on the UAV.
Noise reducing techniques

- Fitting the propeller to suite our mission exactly (Geometrical and physical properties): prop's speed, Number of blades, Blades thickness and length, Sweeping blades tip
- Mufflers
- Engine's power
- Quiet engine (electrical)
- Two engines: first for climbing second for loitering
- Fuselage adjustment
- Flying at high altitudes

The chosen solution for MonGuard: Reactive Muffler

- Very good attenuation of sound.
- Relatively easy to implement.
- Simple installation.

Our Muffler

The information was taken from BME 105cc engine which is quite similar to our DA-100 engine. (9.2 HP, weights 4.4 lb, ...)

Exhaust tubes 7/8" O.D. 3 1/2" long 261 gr per set 9.2 oz Per set

Alternatives for GPS

The basic idea

Finding out where you are when you don't have GPS or access to it.

The options

- 1. Cellular tracking
- 2. Wi-Fi positioning system
- 3. Photo recognition system
- 4. Using other satellites
- 5. Radio navigation (LORAN-C stations)
- 6. Using accelerometers

Thrown appliances

SCOUT – Lockheed Martin

IMI - Bomblets

PERFORMANCE

Bomblet MB5, Lethal Areas

 Standing troops
 197 m²

 Prone troops
 96 m³

 T62 tank
 3 m³

BOMBLET M85

Available ammunition

For our needs there is no of-shelf product that can be used in the MonGuard UAV.

The most promising candidates are the explosives, (TNT or other) tear gas, pepper gas and toxic gas, stun.

 It may be possible to use existing bomblets (IMI M85/M87) as carried ammunition – demonstrated in CAD model.

Thrown appliances trajectory plot

8. Airborne Model

Monguard Airborne Scaled Model

Monguard Airborne Scaled Model

- The goal of the scaled airborne model is to demonstrate and prove the design.
- It is important to show that a heavy forward canard configuration is possible and flying.
- When building we emphasized low cost and self production as much as possible.
- The scaled model does not include folding surfaces and canister launch, but focus on the aerodynamics of the body.

UAV model design

Landing gear design

Optimum dimensioning for tricycle gear design (Raymer):

- 10-15 deg. Tip-back Clearance for takeoff
- Front wheel takes 10% of the load
- Main gear takes 90% of the load

Static moment equilibrium:

Design iterations

Load distribution

Size of main gear

Results:

76% / 24% load on main/front wheel

427

UAV Model building

UAV Model Building

UAV Model building

UAV Model building

MONGUARD

Darnonon

Model schedule and budget

- The budget we received for building the scaled model was 3800 NIS. So far our expenses did not exceed 2600 NIS.
- Less than 8 weeks building time

9. Summary

Based on client requirements of the system, our thinking process and deliberations the following was accomplished: Market survey and preliminary design.

- Configuration selection and detailed design of the following:
 - Wing / Canard
 - □ Fuselage
 - Wing / Canard opening mechanism
 - Camera withdrawal mechanism
 - □ Canister
- Detailed analysis:
 - Aerodynamics of wing / canard surfaces
 - □ Fuselage load and stress
 - Wing / Canard load and stress

The explored topics were:

- □ Engine
- Camera
- □ Avionics
- □ Alternatives for GPS
- □ Noise reduction
- □ Thrown appliances
- A scaled (1:0.45) flying model was designed, built and flown.
- Subjects for further exploration:
 - □ Fitting the propeller to the mission profile.
 - □ Adjustment of the aerodynamic surfaces to fit the mission profile.
 - Design, building, experimentation and analysis of Wind tunnel model.
 - Launching Booster detailed design.

Questions...