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Intro 

Operational need 
 
 The need for accurate, fast and online information is 

rapidly growing. 

1. Controlling sensitive areas.  

2. Controlling areas that are hard to reach. 

3. Security and intelligence need.  

 

Out of this need emerged the solution : 

The MONGUARD  (Multi Operational National Guard). 
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What‘ve been done 
Requirements 

Review of existing solutions 

according to system 

requirements 

 

Preliminary sizes estimation Market survey 

Comparison 

Comparison 

 

The chosen configuration - Folding wings 

 

PDR 

Preliminary design 

 

Folding wings Inflatable wings 

Selection and design 

of components 

Avionics 

Cameras 

Engine 

Canister 

Rocket engine 

(Booster) 
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 Structural design and analysis of aerodynamic surfaces. 

 

 Aerodynamic analysis of wings/canard. 

 

 Fuselage detailed design : 

 Wings joint 

 Sensors doors opening mechanism 

 Service panels 

 Cowling + NACA Scoop 

 Reinforcements 

What‘ve been done 
This semester 
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 Specific Issues : 

 Engine noise reduction 

 Alternatives for GPS 

 Thrown Appliances 

 

 Design and Building of a flying Model 

 Examination of building a wind tunnel model. 

 

What‘ve been done 
This semester 



2. Specs and Customer 
    Requirements 
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UAV specification 

 Max. Take Off  Weight – 50 kg 

 Payload Weight - 20 kg 

 Operational Endurance – 10 hr 

 Max. Flight Level – 10,000 ft 

 Canister Launched Capability 

 Precision Para foil Recovery 

 Day and Night monitoring capabilities 

 velocity: Min. 40 Kt ;Cruise 60 Kt ;Max. 90 Kt 

 Low acoustic signature 

 Multi-functional component 
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Mission Profile 
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12 

 

  Our solution is UAV with canard configuration  

  The specifications:     Endurance: 6.5 hr 

                                        Weight: 50 kg 

 The UAV will be equipped with 2 cameras  

 Person identification capability from 2500ft  

 Vehicle identification capability from 5000ft 

 Fit for various ground and aerial vehicles. 

 

Our solution: 
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ICD-Unfolded 
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ICD-Folded 



3. Flight Performance 
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Power Requirements 

Required Power : Assumptions 

L/D=10 

Propeller efficiency 0.7 
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Available, Required and Excess  
Power Vs. Velocity  
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SFC =0.673 kg/hr/HP 

SFC =1 kg/hr/HP 

Safety factor = 1.5 

Engine efficiency is 0.7 

Beginning of the endurance at 48 kg and ending at 37 kg (11 kg were consumed)  

Loiter Performance 
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2
2 1

V
R n

g
 

Horizontal Turn Performance 
Radius of turn vs. load factor  

We can obtain radius of 150[m] at n=2, at velocity of 50knts (loitering). 

 At cruise velocity ,n has to be 2.5 , so the radius will remain 150m. 
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Load factor: 
Nmax= 2.5 

Nmin= -1.5 
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V-N Diagram 
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 
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Endurance ,at constant velocity  

State Time [min] 

Peng 

[HP] 

FF 

 [kg/hr] 

Fuel 

Weight 

   [kg] 

Horizontal 

Velocity 

[knts] 

Climb 

Rate 

[ft/min] 

Range 

[km] 

Climbing 9 6.8 6.8 1 70 600 19 

Cruising 1 11 3.4 3.4 0.7 60  21 

Gliding 8 0 0 0.01 60  10 

Loitering 330 (5.5 hr) 2.3 2.3 11 50    

Climbing 13 6.5 6.7 1.4 70 600 27 

Cruising 2 13 2.8 2.8 0.5 60   23 

Total 6.5[hr]     14. 5[kg]     100[km] 

Mission Profile Calculations 
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Airfoil Selection  
Requirements: 

 Minimal drag 

 Low Reynolds numbers 

 Thick profile 

 Big camber 

 Low speed 

5 5(Re 4 10 6 10 )   

Reynolds Camber Thickness 

Alpha max 

[deg] Cl max Cd min Airfoil 

402000 0.016 0.12 10 1.2 0.008 S8052 

502000 0.026 0.16 13 1.3 0.01 Selig S8037 

401000 0.04 0.14 10 1.7 0.012 SD 7062 

503000 0.018 0.16 13 1.2 0.009 S8036 

510000 0 0.12 14 1.3 0.009 E472 

308600  0.06 0.14  10 1.6 0.011 63137  FX 

500000  0.0707  0.1411  10 1.7 0.01 FX76 MP140  

500300 0.025 0.16 10 1.05 0.014 SG6040 
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1.7 

The Chosen Airfoil For The Wing 
And The Canard is SD7062 
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Aerodynamic Numeric 
Calculation  

 Lift distribution on wing – canard configuration using 

VLM - Vortex Lattice Method. 

 

 Airfoil lift calculation using Vortex Distribution method. 
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Theoretical Lift Coefficient 

 Assuming flat aerodynamic surfaces and neglecting 

mutual wing-canard interferences.  

 

 

 

 

 

 

 

 

 The canard decreases wing lift by 30%! 
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Cp Distribution 
  

wing canard 
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Cp Distribution 

 
 

FWD 

Canard 

Wing 

Cp magnitude 
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SD 7062 Airfoil 
Calculations 
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Lift Line Of SD7062 

5.3Cl 

 

 

6.311Cl 

Experimental Calculated 
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Pressure Distribution On SD7062 

11 
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Effect Of Another Airfoil On 
Lift Line Calculation 

70625.51 87%wing SDCl Cl  

 

For infinite canard and wing 

The canard decreases wing lift by 13% 
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Updated Flight 
Performance 

According To New Lift Coefficients 

 Airfoil experimental Cl. 

 

 Finite wing VLM calculated Cl. (with canard effect) 

 

  Airfoil ‘Wing theory’ calculation. (with canard effect) 
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Endurance 
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Power   
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V-N Diagram 



37 

Pitch Rate ( ) 



4. UAV Component 
Detailed Design  
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 Fuselage 

 Camera door opening mechanism 

 Service panels 

 Cowling + NACA Scoop 

 Reinforcements 

 

 Wing structure 

 

 Wing / Canard opening mechanism 

 

 Canister 

The components 
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The Fuselage 
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The Fuselage 

Lower longitude 

reinforcement 

Lower longitude 

reinforcement 

Upper longitude 

reinforcement 

Upper longitude 

reinforcement 
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Camera withdrawal 
mechanism 

COG 

Wheel+ 

engine 

Rear 

camera 

Camera 

holder 

Door 

frame 

Sliding 

door 

Camera 

engine 
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Camera and door 
withdrawal mechanism 
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Service Panels 

Rear 

camera 

 
Front service 

door 

 

Rear service 

door 

 

Modular 

component 

 
Muffler 

 

NACA Scoop 

 
Front camera 

 

Front air bag 

 

Rear air bag 
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Cowling With NACA 
Scoop 
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Wing Structural Design 

 First, a conventional design was 

 performed. 

 The result was a heavy wing (8.5 kg) 

 which could bear greater loads 

 than the maximum load applied 

 on the UAV. 

 

 

 

 It was decided to build aluminum extruded surfaces with 

thin spars.   
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Wing – half span 

Weight – 3[kg] 
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Canarad – half span 

Weight – 1.8[kg] 
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Wing/Canard Opening 
Mechanism 

 It is necessary to design a pivot for this mechanism.    
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The Canister 

Lugs 

Carbon Epoxy 

Weight – 55[kg] 



Movie 
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5. Load and Stress 
Analysis 
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 The analysis was performed using FEM (Finite Elements 

Method) program, called COSMOS. 

 Shell modeled wing. (more accurate for thin bodies than 

3D elements) 

 The wing is fixed at the root with 6 DOF. 

 It is subjected to explicit pressure with the spatial shape 

of a second degree polynomial : 

Wing Structural Analysis 

  10 27.6289 10 0.001833P x x   
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FEM Analysis 
Stress 
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Canister Structural Analysis 
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Body Structural Analysis 

 חסר עדיין –אנליזה לגוף עם חיזוקים 

 Fixed at engine 

 concentrated force at nose = body weight X 2.5    



6. Systems General 
Arrangement  
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Component Integration 

Folded UAV Wing opened UAV section 
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Camera 

(front) 

Batteries 

Fuel 

(front) 

Air bag 

(front) 

Parachute 

Thrown 

appliances 

Camera 

(rear) 

Air bag 

(rear) 

Fuel 

(rear) 

Engine 

Propeller 
  

 

  

 
 

 
 

 
Muffler 

 
 

System Arrangement 

Avionics 
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Components weights 
item Weight [gr] position [mm] 

body 3629 1209 

fwd camera 1256 82 

battery pack 2635 241 

fwd fuel 8059 541 

fwd air bag 78 900 

parashoot 214 850 

canard saddle 1160 1031 

canard 3882 1077 

wing saddle 1128 2144 

wing 5546 2190 

wing tips 863 2211 

rear camera 1519 1044 

appliances 6607 1639 

avionics 218 1860 

rear air bag 78 1940 

rear fuel 8245 2183 

engine 2870 2454 

Contingency 2000 cg 

Total weight 

50 [kg] 
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Stability margin 

CG – 1452 [mm]  

from nose 

 

NP – 1521 [mm]  

from nose 

Stability margin 

20% 
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Centogram 
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Purchased Components 

 Cameras 

 

 Batteries 

 

 Air bag 

 

 Parachute 

 

 Avionics 

 

 Engine 

 
 

Piccolo II 

DA-100 

D-Stamp 



66 

The engine: 
DA-100 

DA-100 Specifications: 
 

 Displacement: 6.1 ci. (100cc)  

 Output: 9.8 hp  

 Recommended Props: 

2-blade: 26x12, 27x10, 28x10. 

3-blade: 24x12, 25x12, 26x12.  

 Weight: 5.8 lbs (2.63 kilos)  

 Length: 6.5" (162.5mm)  

 Width: 11.45" (290.8mm) (w/ plug caps)  

 Bore: 1.6771" (42.6mm)  

 Stroke: 1.3779" (35mm)  

 Typical RPM: 1,000 to 6,700 

8,500 max RPM  

 Fuel Draw: 2.5 oz/min at 6,000 RPM.  

 Provides the needed Power. 

Light weighted. 

Known as reliable. 
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The Autopilot: 
Piccolo II 

 Complete integrated avionics system for small UAVs. 

 

 Includes avionics hardware and software and ground-
station hardware and software. 

 

 A secondary payload serial port. 

 

 Volume: 4.8” x 2.4” x1.5” 

    Weight: 212 gr (max) 
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D-stamp 

night 

D-stamp 

day 

weight 950 gr 750 gr 

dimensions 125x160(l) 125x160(l) 

pitch +70 to -40° +70 to -40° 

zoom X10 

Field of view 14x10.5 ° 5.2x4.2 ° 

38x48 ° 

Altitude <3000 ft 3,000 ft       

The cameras: 
D-Stamp (d/n) 

(CONTROP) 



7. Specific Issues  
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UAV noise reduction 
 

Alternatives for GPS 
 

Thrown appliances 
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 The propeller 

 

 The engine 

 

 Aerodynamic noise 

 

The sources of noise 
in an airplane? 

Noise in UAVs and its 
reduction 
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Why should noise bother us? 

 Alerts the enemy and draws attention. 

 Interferes with the work of equipment placed on the 

UAV. 
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Noise reducing techniques 

 Fitting the propeller to suite our mission exactly 

     (Geometrical and physical properties): 

 prop’s speed, Number of blades, Blades thickness and 

length, Sweeping blades tip 

 Mufflers 

 Engine’s power 

 Quiet engine (electrical) 

 Two engines: first for climbing second for loitering 

 Fuselage adjustment 

 Flying at high altitudes 
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The chosen solution for MonGuard: 
Reactive Muffler 

 Very good attenuation of sound. 

 

 Relatively easy to implement. 

 

 Simple installation. 

 

 The information was taken from BME 105cc engine which is quite 

similar to our DA-100 engine. (9.2 HP, weights 4.4 lb, … )  

 

Exhaust tubes 
7/8" O.D.  
3 1/2" long 
261 gr per set 
9.2 oz Per set 

Our Muffler 



75 

Alternatives for GPS 

The basic idea 
 Finding out where you are when you don’t have GPS 

or access to it. 

 

The options 
1. Cellular tracking 

2. Wi-Fi positioning system 

3. Photo recognition system 

4. Using other satellites 

5. Radio navigation (LORAN-C stations) 

6. Using accelerometers 
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Thrown appliances 
SCOUT – Lockheed Martin IMI - Bomblets 
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Available ammunition 

 For our needs there is no of-shelf product that can be 

used in the MonGuard UAV. 

 

 The most promising candidates are the explosives, (TNT 

or other) tear gas, pepper gas and toxic gas, stun. 

 

 It may be possible to use existing bomblets  

    (IMI M85/M87) as carried ammunition – demonstrated in 

CAD model. 
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Thrown appliances trajectory plot 



8. Airborne Model 
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Monguard Airborne 
Scaled Model 
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Monguard Airborne 
Scaled Model 

 The goal of the scaled airborne model is to demonstrate 

and prove the design. 

 It is important to show that a heavy forward canard 

configuration is possible and flying. 

 When building we emphasized low cost and self 

production as much as possible. 

 The scaled model does not include folding surfaces and 

canister launch, but focus on the aerodynamics of the 

body. 
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UAV model design 

UAV Scaled model 
 

Scale factor – 0.45 

 

 

 

 

537 [mm] 

1170 [mm] 

 

 

 

900 [mm] 

1485 [mm] 

 

 

 

 

  537 [mm] 

4.7 [kg] 50 [kg] 
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Landing gear design 

 Optimum dimensioning for tricycle gear design (Raymer): 

 10-15 deg. Tip-back Clearance for takeoff  

 Front wheel takes 10% of the load 

 Main gear takes 90% of the load 

 

 Static moment equilibrium: 

 

 Design iterations 
 Load distribution 

 Size of main gear 

 

 Results:  
 76% / 24% load on  

     main/front wheel 

 

L
front wheel MAX static load W

L l

l
main gear MAX static load W

L l

 


 


Prop. Diameter 
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UAV Model building 

 

Crack in fire wall 

 

Front Cover – 

Coca Cola bottle 

PVC tube, thickness 

2.2[mm]  

Wing building 

New model body 
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UAV Model Building 

Fire wall 

Landing gear form 

Canard Wing 
Canard Wing 
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UAV Model building 
Fire wall 

Wing base 

Landing gear form Wingtip servo soldering 

 

Cutting fuel service door 

 

Placing wing and canard 
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UAV Model building 
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Model schedule and budget 

 The budget we received for building the scaled model 

was 3800 NIS. So far our expenses did not exceed 2600 

NIS. 

 Less than 8 weeks building time 

 



9. Summary 
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 Based on client requirements of the system, our thinking 
process and deliberations the following was accomplished: 

 Market survey and preliminary design. 

 

 Configuration selection and detailed design of the following: 
 Wing / Canard 

 Fuselage 

 Wing / Canard opening mechanism 

 Camera withdrawal mechanism 

 Canister 

 

 Detailed analysis: 
 Aerodynamics of wing / canard surfaces 

 Fuselage load and stress   

 Wing / Canard load and stress 



91 

 The explored topics were: 

 Engine 

 Camera 

 Avionics 

 Alternatives for GPS 

 Noise reduction 

 Thrown appliances 

 

 A scaled (1:0.45) flying model was designed, built and flown. 

 

 Subjects for further exploration: 

 Fitting the propeller to the mission profile. 

 Adjustment of the aerodynamic surfaces to fit the mission profile. 

 Design, building, experimentation and analysis of Wind tunnel model. 

 Launching Booster detailed design.    
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Questions… 


