

SATLA-U Search & Attack Loitering Autonomous UAV

The SATLA-U Team

Group director: Dror Artzi

Us:

Avi Bitansky
Michael Iovnovich
Mor Ben-Ephraim
Maital Levy
Vladimir Stoliarevsky

Oren Zarnihchi Dima Alekhin Itzik Meyer Shai Cohen Tal Barak

Specifications

Performance

- Endurance: 3[hr]
- Max. speed 230 [kts] @ cruise ,360 [kts] @ dive
- Designated target: Stationary, Precision: 2x2[m]

Technical Data

- Weight: 250 [kg]
- Payload weight (warhead) 45 [kg]
- Fuselage length 3.4 [m]
- Wing span 3.26 [m] (fully opened)
- Cost \$ 870,000

SATLA-US

The S-U's Unique Capabilities and Design

- Carriage Capability on two different fighter planes
 F15 and F16
- Endurance of 3hr Scanning Time Neto
- Metamorphic Configuration Wing Mechanisms
- Advanced Aerodynamic Configuration

<u>Design</u>

- Performance and Propulsion Model
- Aerodynamic Computational Model
- Aerodynamic Model for Store Separation
- 6 DOF Simulation for Store Separation
- 3 DOF Attack Simulation
- Dynamic Loads Analysis
- Impact Analysis at Separation

Design Process

Design Process Continued

Performance and Propulsion

 According to preliminary performance analysis, a small turbo-jet engine was chosen

SWB-100	
Diameter	166 mm
Length	411 mm
Weight	5.2 kg
Design RPM	76,000
Thrust (@ max RPM, static	50 kgf
exp., sea level)	
T.S.F.C	1.31 1/hr

- Inlet design
- Pyrotechnic Ignition

Performance and Propulsion continued

 According to the detailed specifications of the engine, an engine-model for performance analysis was developed:

Performance and Propulsion continued

<u>Cruise Stage</u>

 The requirement for long endurance leads a growth of the fuel amount. Therefore, the velocity has to be suitable for minimum fuel flow (and not minimum drag).

Performance and Propulsion continued

Turn (Maneuver)

- It is assumed that the S-U maneuvers for approximately 10% of the endurance time
- Constant turn velocity was set to 180 kts

Results

Cruise:
$$\overline{W}_{cruise} = 203 [kg] \left(\frac{L}{D}\right)_{cruise} = 10.3 \quad C_L = 1.22$$

$$\overline{V}_{cruise} = 68 \left[\frac{m}{s}\right]; \ \overline{M}_{cruise} = 0.2 \quad \frac{T_{\max}}{\overline{W}} = 0.25$$

$$\overline{V}_{cruise} = 68 \left[\frac{m}{s} \right] \; ; \; \overline{M}_{cruise} = 0.2 \quad \frac{T_{\text{max}}}{\overline{W}} = 0.25$$

$$(Fuel)_{cruise} = 90.5[kg]$$

Turn:

$$n_M = 1.93$$
 $\phi = 58.8^{\circ}$ $\frac{N_{Rounds}}{2} \approx 62$

$$T_{\text{max},turn} = 49.7 [kgf] \quad \overline{T}_{turn} = 41.5 [kgf]$$

$$Fuel_{turn} = 14.6[kg]$$

Total Fuel = 105 [kg]

Flight & Turn Envelops

Flight Envelope for cruise period, Throttle at Max, Max Weight

SATLA-

Flight & Turn Envelops continued

TAS [kts]

Turn Work Points $Max\ Manuver$ n = 2.15 $TAS \approx 240[kts]$ Thrust = 54[kgf]

Aerodynamic Design

Main Features:

- Ogive nose
- Variable cross section body
- Continuous wing sweep mechanism
- Aerodynamic & Geometric wash-in twisted wing
- Winglets
- Cruciform Mono-block Fins

Wing Design

Requirements:

- High CL / Low speed working point at cruise
- Low drag design
- Low AoA cruise to avoid unnecessary body drag
- F-15/F-16 dimension envelope criterion
- Maneuverability at dive

High AR design: c = 22 [cm] $b = 3.26 [m] \rightarrow AR = 14.8$

Airfoil Selection:

- ◆ High CL at low AoA → highly cambered airfoil
- High L/D → low thickness

	f/c[%]	t/c [%]	
	4.12	11.6	USA35b
	7.15	14	E422
Š	9.92	12.5	E423

Maneuverability Consideration:

- At cruise: Low speed, High CL, $\Delta X \approx 0.25c$
- At Dive: High speed → much smaller CL is needed → sweep angle
 - $\rightarrow \Delta X \uparrow \uparrow \rightarrow low maneuverability$

$$\Delta X_{Dive} \left(\Lambda = 70^{\circ} \right) \approx 2.9c$$

SATLA-U CDR

Solution: Wing Slicing

Custom CL Distribution:

			_1
	Airfoil	Y[m]	i [deg]
Root	USA35b	0	4
Middle	E422	0.75	5
Tip	E423	1.5	7

$$\Delta X_{Dive} \left(\Lambda = 25^{\circ} \right) \approx 0.69c$$

Stall Prediction:

	a_i (Cl_cruise)	i [deg]	Cl_max	a_stall [deg]	a0L [deg]
Root	-5	4	1.65	13	-5.56
Middle	-2.5	5	2.14	14.5	-6.27
Tip	-16	7	2.7	14	-10.87

• At Cruise, middle section is first to stall, at $\alpha_{SATLA} \approx 16^{\circ}$ $C_{L-max} = 2.3$

Computational Model

Computational Aspects:

- Medium 3D effects
- Transition Mach numbers
- Highly swept, twisted, upper wing
- Non-symmetric wing wake
- Slender body
- Inlet effects
- Store separation calculations

Drag Model

- Friction drag, by Laminar Eckert & Turbulent Van Driest models
- Pressure drag, Roughness effect by Roskam method
- Induced drag, by VLM Program

	Cruise	Dive	Release
Height [ft]	5000	3000	40,000
Mach	0.2	0.5	0.9
CD0-Wing	0.014	0.015	0.18
CD0-Body	0.037	0.036	0.33
CD0-Tail	0.006	0.008	0.026
CD0-Inlet	9E-5	E-4	8E-4
Total CD0	0.058	0.06	0.53

■ At cruise: **K=0.041**

• Winglets effect: Reduction of 6% in $K \rightarrow 2$ [Kg] of fuel, 2 [Kgf] of D_max

<u>VLM Model</u>:

Our **Extended Vortex-Lattice Model** is based on AVL GNU code, developed in MIT

- 3D Potential, quasi-steady, Linear model
- Prandtl-Glauert compressibility application
- Bodies by Slender body theory, circular cross-section only
- Trim & constrain calculations
- Stability derivative calculations

Cruise Calculations:

$$\alpha_{SATLA} = 0.8^{\circ}$$
 $C_L = 1.22$ $C_D = 0.113$ $\delta_{e-trim} = -0.387^{\circ}$ $X_{cg} = 1.39[m]$ $\Delta X = 0.23c$

Dive Calculations:

$$\delta_{e-trim} = -0.25^{\circ} X_{cg} = 1.395 [m] \Lambda_{LE} = 25^{\circ} \Delta X = 0.68c$$

SATLA-U CDR

Fins

Comparison with Pmarc:

Comparison with Pmarc:

Pmarc predicts a more negative Cm_a, which may increase
 S-U's static stability margin

32

Computational Model

Store Separation Computational Model (SSCM):

- S-U SSCM code was developed in order to calculate S-U's aerodynamic
 6DOF coefficients with satisfied resolution
- S-U SSCM created a 14,580 calculations bank for the simulation

SATLA:

Computational Model

Store Separation Model:

■ F-15's effect fades at Z>15 [m]

Store Separation

<u>Goals:</u>

- Verify safe separation of S-U
- 2. Identify flight envelope for safe separation

Tunable parameters in design:

- 1. Speed and angular rate of deflection
- 2. Positioning angle under wing
- 3. Geometry
- 4. Moment of inertia

Solution Method:

- A Simulink 6DoF simulation in body axes.
- Aerodynamic force and moment coefficients are interpolated using S-U SSCH.
- Flight conditions and the effects of deflection are treated as starting conditions.
- We tried avoiding asymmetric deflections and positioned the S-U in the same plane as the carrier aircraft
- The entire separation is with no steering.

Results continued

Store Separation Summary

- The S-U in its current configuration is safely separable.
- The flight envelope that was checked was a range of vertical maneuvers the carrier can be performing.
- This range was found to be -0.6 < g

Future Work:

- Check of other carrying stations.
- 2. Check for F-16 as well.
- 3. Check for range of speeds.

Control & Guidance

Control Analysis Method

V.L.M & Roskam estimation

Stability & Control derivatives

Longitudinal & Lateral Eq. of motion

Motivation

- Aerodynamic model investigation
- Steering limitations
- Longitudinal & Lateral controllers design for cruise & dive

Cruise - Longitudinal Dynamics

40

System Response

Using Velocity and Height controllers to 3 Second 20 Knots Vertical Wind Gust

Dutch-Roll Stability Analysis

SATLA-U CDR

Control & Guidance

<u>Steering</u>

- **BTT** Bank To Turn opposed to Skid To Turn
- Tail (elevator) Pitch and Yaw
- Ailerons Roll

<u>Guidance</u>

- Proportional Navigation
- Requires the homing head to output LOS rate and distance from target.
- Sensitivity to wind gusts and homing head bias was checked through simulation.

3 DOF Simulation

Main Assumptions

- The significant motion of the S-U is on the x-z plain
- The dive would start after locking on the target
- Only small roll corrections would be required

<u>Guidance</u>

- Navigation Constant: N=4
- Implementation of the PN guidance in the simulation:

$$a_{z,demand} = -NV_{\parallel}\lambda_{y} - g\cos\theta$$

$$g_{bais}$$

3 DOF Simulation continued

<u>Goals</u>

- Verify required hit accuracy: Square of 2X2 [m]
- Test the integration of the various models: Flight control, Aerodynamics, wind model....

<u>Autopilot</u>

- Acceleration controller in order to achieve the required normal acceleration
- Analog design

Propulsion: Off during the dive

Modes

- Complete wings
- Sliced wings at $\alpha \le -6^{\circ}$
- Blind Range At R = 200[m] the $a_{z,dem}$ is taken as the average of the last 9 $a_{z,dem}$.

3 DOF Simulation continued

Initial Conditions

$$h_0 = 5000 \text{ [ft]}, x_0 = 2000 \text{ [m]}, v_0 = 68 \text{ [m/sec]}$$

$$\alpha_0 = 0.8 \text{ [deg]}, \ \theta_0 = 0 \text{ [deg]}, \ q_0 = 0 \text{ [deg/sec]}, \ m = 203 \text{[kg]}$$

Simulation Stop

• When the S-U hits the ground or when $|\alpha| \ge \alpha_{stall}$

Wind

 A wind step was added at a predetermined range to test the miss distance sensitivity to wind input.

$$V_{wind} = 20$$
 knots, tail wind @ R=200 [m]

Simulation Results

<u>Comments</u>: The green star (*) marks the wind entrance.

The red star (*) marks the slice wing point.

Simulation Results continued

Structural Analysis

 The S-U Structure is designed to withstand any critical load that may develop at most extreme maneuvers and at highest load factors with minimum weight and minimum

cost.

V-N diagram at cruise & attack stages:

Wing Development

Material and Manufacture

- Designed for AL 7075 T6 N = 1.2 $\sigma_{\text{max}} = \sigma_y / N = 575 [MPa]$
 - Eventually will be Composite due to manufacture considerations.

Specifications

- Half wing span = 1.42 m
- Chord = 0.22 m
- Skin thickness 1.5 mm

Tail Development

Material and Manufacture

- For low cost and weight: Al 7075 T6, Extrusion
 Stress Calculations
- The tail is mono-block and therefore clamped to the body by a connecting rod.

Specifications

- Skin thickness 1.5 mm
- Half tail span = 0.268 m
- Root chord = 0.52 m
- Tip chord = 0.13 m
- 1 rib
- Servo axis

Max. Static Stress and Displacements of

Winglet Design:

		. \	<u> </u>			
Flight Condition	Max. Stres	s [MPa]	Max. Disp. [cm]			
	Wing	Tail	Wing	Tail		
Straight & Level Flight (Nominal)	192.5	0.1	6.6	8e-5		
Maneuvering Limitation	370.4	5.7	12.4	0.003		
Maximum Velocity	413.5	2.8	14.2	0.002		
	Attack (n=3)					
Maneuvering Limitation	106.1	15.2	0.6	0.01		
Maximum Velocity	57.8	18.4	0.3	0.013		

Maximum Wing Displacement:

Max. Dynamic Stress

- The Dynamic loads as a product of step inputs of wind and Elevator were calculated.
- The structural limitation of Elevator step at high speed during attack is 10 [deg].

	Max. Stress [MPa]						
Step	Cruise (V	=68 m/s)	Attack (V=140 m/s)				
Magnitude	Wing	Tail	Wing	Tail			
		Elevat	or input				
5 [deg]	150	3.4	299.7	115.5			
10 [deg]	165.7	9.2	515.8	171.3			
11 [deg]	305.2	17.7	582.4	170.4			
		Wind	d input				
20 [kts]	288.4	4.9	453.9	31.6			

Fuselage Design

- AL 7075 T6
- /3 dividers
- Length: 3.4m
- Diameter: 368 [mm]

SATLA:

Impact Analysis

- The deployment of the S-U is performed by 2 pistons of 20g impact
- A frequency response is initialized
- The body response was simulated

$$\sigma_{\text{max}} = 514[MPa]$$

Wing Mechanism

 Wing mechanism is designed to change the wing sweep according to the specific stage of SATLA-U mission

 In order to find a perfect match for the S-U unique mission profile several concepts were analyzed

Tension Spring

Torsion Spring

Gear

Ball Screw

 Due to relative simplicity and low weight the ball screw alternative was chosen

Wing Mechanism continued

System characteristics:

Max. Moment	400 [Nm]
Time for full wing opening	2-3 [sec]
Transmission ratio	1:400
Total Weight	3.5 [kg]

Operation Principle and Components

SATLA!

AV Systems

2 Batteries
UBI-2590
Ultralife

6 Servos
HSR-59952G
180 RC

Tactical
Communication
Data Link

3 OMNI Antennas

Fuel Kerosene

Flight Computer
Athena's
GuideStar 311

Imaging and Homing **EMIT's Microview**

Warhead

Turbo-Jet Engine SWB 100

Fuselage Layout

- Seeker
- **Avionics Unit**
- Antenna (x3)
- **Communication Unit** 11. Inlet
- **Batteries (x2)**
- Warhead
- Pitot tube

- Wings & Wing Mechanism
- **Fuel Tank & Fuel Control**
- 10. Power Plant
- 12. Fins (x4)
- 13. Fin Actuator (x4)
- 14. Hanging Hook

Layout Weight & Balance

Component	Weight [Kg]	x [m]	y [m]	z [m]
Fuselage	37.8	1.81	0	0
Warhead	45.1	0.52	0	0
Fuel	106.12	1.37	0	0.02
Wing mechanism	9.79	1.55	0	-0.08
Wings	8.74	1.48	0	-0.16
Inlet	3.52	2.72	0	0.09
Pitot tube	0.04	0.4	0	-0.2
Seeker	6.8	0.19	0	0
Engine	6	3.25	0	0
Tails	2.76	3.19	0	0
Tail servos	0.26	3.13	0	0
Data Link	8	2.3	0	0.06
Avionics & Navigation	2.4	2.27	0	-0.06
Battery x2	2.88	2.46	0	0.05
F. Antenna	0.5	0.5	0	-0.2
Top R. Antenna	0.5	2.9	0	-0.15
Bottom R. Antenna	0.5	2.9	0	0.2
F. Hook	0.08	1.22	0	-0.21
R. Hook	0.08	1.58	0	-0.16
Tubing	1.5	1.29	0	0.15
Contingency	6.63		1	/ 8
Total	250	1.4	0	0

Cost Analysis

	Roskam	Rhaymer
Total Engineering Cost	\$ 2,364,040	\$ 8,234,590
Total Manufacturing Cost	\$ 21,700,073	\$ 9,462,327
Total Tooling Cost	\$ 4,414,590	\$ 3,381,493
Total Quality Control Cost	\$ 2,821,010	\$ 1,258,489
Total Engines & Avionics Cost	\$ 55,460,000	\$ 55,460,000
Total Materials Cost	\$ 1,380,091	\$ 1,151,760
Total Development Support Cost	\$ 50,145	\$ 1,635,264
Total Flight Tests Cost	\$ 566,178	\$ 4,719,609
Total Project Cost	\$ 88,756,127	\$ 85,303,532
Single Unit Cost	\$ 887,561	\$ 853,035

 The analysis was made for 100 production units, and 5 flighttest aircrafts

Closing Comments and Thanks

 We have shown the feasibility of the suggested platform though additional analysis is required

Thanks and Gratitude!!

Impact Analysis

Guidance

Control

Wing Mechanism

SATIAL Impact Analysis detailed

The formulation of the dynamic response:

$$(EIu")"+\rho A\ddot{u}=f(x,t)$$

We assume a solution:

$$u(x,t) = \gamma(x)e^{i\omega t}$$

Structural Modes:

$$(\lambda L)_n = 0$$
, 4.73, 7.853, 10.996, 14.137, $17.279 \cong \frac{2n-1}{2}\pi$

$$\gamma^{e}_{n}(x) = \cosh(\lambda_{n}x) + \cos(\lambda_{n}x) - \frac{\sin(\lambda L)_{n} - \sinh(\lambda L)_{n}}{\cos(\lambda L)_{n} - \cosh(\lambda L)_{n}} (\sinh(\lambda_{n}x) + \sin(\lambda_{n}x))$$

Free Modes:

$$(\lambda L)_1 = 0 \rightarrow \gamma^r_1 = 1, \quad \gamma^r_2 = x$$

Galerkin Method:
$$u = \sum_{i=1}^{N} \gamma_i(x) q_i(t) \rightarrow \int_{0}^{L} \varepsilon \cdot \gamma_i dx = 0$$

SATLA: Impact Analysis detailed

Semi-Discrete System:

$$M\ddot{q} + Kq = F$$

If free modes are disregarded then the system is explicit and every equation can be solved separately:

$$m_{ii}\ddot{q}_{i}^{e} + k_{ii}q_{i}^{e} = f_{i} \rightarrow q_{i}(t) = \frac{f_{i}}{k_{ii}}(1 - \cos(\sqrt{\frac{k_{ii}}{m_{ii}}}t))$$

At the end of the impact f = 0 and the frequency response is:

$$q(t) = A\sin(\sqrt{\frac{k}{m}}t) + B\cos(\sqrt{\frac{k}{m}}t)$$

PN and BTT

- As explained in the PDR the guidance law is based on PN and the steering law is 90-BTT.
- This requires the homing head to give the LOS rate j and the range of the target.
- The simulation will give more restrictions on the homing head.
- The combination of PN and BTT isn't trivial.

Side View-The longitude Plane

Top View – the lateral plane

PN and BTT continued

The LOS rate is transformed to body axes. It now has a pitch rate and a lateral rate. The accel command is:

$$a_{P} = NV_{M}\dot{\lambda}_{P}$$

$$a_{Y} = NV_{M}\dot{\lambda}_{Y}$$

- The tangent trigo. function, causes over maneuvering and therefore should be avoided. We will use a licensed patent to avoid this.
- In simplified terms, the patent is to maneuver in the pitch plane according to a_{P_c} alone, and to roll according to a_{V_c} alone.
- This eliminates the need of using trigonometric functions and produces highly accurate responses.

Dive - Longitudinal Dynamics

3 DoF Dive Simulation required a design of an az Controller.

SATLA!

Wing Mechanism detailed

Electrical Ratings

	_				
Parameter	Symbol	Units	DA34DBB	DA34FBB	DA34HBB
Cont. Stall Torque ¹	Tc	oz-in N-m	77 0.55	134 0.95	147 1.04
Peak Torque ²	Tp	oz-in N-m	190 1.34	335 2.37	580 4.10
Motor Constant	K _M	cz-in/√watt N-m/√watt	12.6 0.09	18.9 0.13	19.7 0.14
Elec. Time Constant	τε	msec	1.23	1.40	1.00
Mech. Time Constant	τ,,	msec	6.75	4.47	6.00
Rolor Inertia	J	oz-in-sec² gm-cm²	0.00913 644.8	0.0139 981.6	0.0193 1363
Thermal Resistance	R _{TH}	°C/watt	2.66	1.98	1.79
Weight	w	oz Kg	48 1.34	63 1.76	89 2.49
Motor Length	L	inch mm	3.2 80	3.7 94	4.7 119.4
# of Poles	_	_	4	4	4

Winding Data

Barrantar	Combal			DA34DBB			DA34FBB			DA34HBB				
Parameter	Symbol	Units	-10	-11	-12	-13	-10	-11	-12	-13	-10	-11	-12	-13
Design Voltage	٧	volts	24	48	90	160	36	48	90	160	36	48	90	160
Cont. Stall Current ¹	Ic	amperes	5.65	3.68	2.57	1.62	7.22	6.36	3.61	2.55	7.10	4.49	2.84	2.01
Peak Current ²	I _p	amperes	17.2	10.7	7.5	4.6	21.8	20	11.6	7.4	23.7	21.8	14.1	9.3
Voltage Constant ±10%	KE	WkRPM V/rad/sec	8.4 0.080	13.5 0.129	19.5 0.186	31.4 0.300	11.7 0.112	12.9 0.123	22.2 0.212	35.1 0.335	18.4 0.176		31.3 0.299	47.8 0.456
Torque Constant ±10%	Kr	oz-in/amp N-m/amp	11.36 0.080			42.46 0.300	15.82 0.112		30.02 0.212				42.33 0.299	
Resistance ±10%	R _M	Ohms	0.85	2	4.1	10.3	0.7	0.9	2.8	5.6	8.0	2	5	10
Inductance ±10%	L _M	mH	0.9	26	5	13	1.0	1.3	3.2	8.2	1.6	2.1	4.6	10.3

Wing Mechanism detailed

16mm Carry™ METRIC THREAD

LEAD ACCURACY: ±100µm/300mm

SATLA-

Wing Mechanism detailed

Wing Mechanism detailed

8.	8.M14.02.52						
	12 mm						
10,5	38	169					
2 8	5 18	17 30					
100%	25% 2 mn	5% 2 mn					
24 Vdc							
Pull							
option on pull only no							
250 g 65 g							
	IP00						

SATLA-U CDR 71