

Approved for Public Release Distribution Unlimited

Joint Unmanned Combat Air System (J-UCAS)

J-UCAS Demonstrator Goal

J-UCAS Concept

New Paradigm in System Affordability

Reduced Acquisition Costs

Dramatically Lower O&S Cost

Enhanced Warfighter Effectiveness

- Reduced Cost per Sortie
- Reduced Manned Aircraft Loss Rate
- Improved Battlespace Awareness

Key System Capabilities:

- Multi-Vehicle Control
- Command, Control & Communications
- Dynamic Mission Planning
- Contingency Management
- Mission Effective CV-Based Design

Phase II Objectives

CV OPS

- Reliable and repeatable catapult launch and arrested landings at shore-based facilities
- Carrier area ops including departure, marshal, approach, final approach, waveoff and bolter
- MCS: functions, interfaces and concept of operations in a near-carrier environment
- DECK HANDLING: operations on flight / hangar decks (taxi, towing, maneuver on and off the elevator, engagement and disengagement with the catapult and arresting gear, and fueling / defueling)
- CV C3: Robust / suitable for the carrier environment

Boeing and NGC Awarded Contract to Design and Develop J-UCAS Demonstration Systems

J-UCAS Technical Challenges

- Ship Suitable Design
 - Aircraft/Ship Integration
 - Catapult Launch/Arrested Landing
 - Carrier Landing Solutions JPALS
- Mission Control Integration
 - MCS Ship Integration
 - Air Operations Challenges
 - Interoperability w/ Manned Aircraft
- Affordable Naval Ops & Support
 - Supportability by Design
- Naval CONOPS
 - J-UCAS Surveillance
 - Future Sensor Development

Focus on Navy-unique technology and integration issues

Comparison of J-UCAS Demonstrator AV Configurations

Gross Weight: 36,500 lb

Op Weight Empty: 18,000 lb

Fuel Volume: 14,000 lb

Payload Capability: 4,500 lb

Engine: F404-GE-102D

Gross Weight: 29,500 lb

Op Weight Empty: 14,500 lb

Fuel Volume: 10,500 lb

Payload Capability: 4,500 lb

Engine: P&W 308C

Aircraft/Ship Integration

- Historic Top 3 Issues for Carrier Aircraft:
 Weight Wind Over Deck Spot Factor
- Other CV issues
 - Catapult Hookup (Geometry, Dynamics, Misposition)
 - Steam ingestion (Jet Blast deflectors)
 - Launch and Recovery Clearances
 - Launch and Recovery Performance & Loads
 - Barricade Compatibility (If Desired)
 - Servicing (Turnaround & Maintenance)
 - Support Equipment Compatibility
 - Taxi Control & Terminal Guidance
 - Tipback Turnover Tie Down

Carrier Operation Control Challenges

JPALS Concept

Air Traffic Control – Fully integrated Mission Control with Carrier Air Operations.

- Digital data messaging and support for full manned and unmanned integration
- ATC concepts accommodate moving carrier environment and enhance aircraft carrier launch and recovery efficiency

- Navigation Relative, differential carrier phase GPS-INS with centimeter accuracy
 - Integrity 500 times more precise than stand-alone GPS
 - Full capability in jamming conditions

Communications – Low latency, high integrity, adaptive data networks with Low Probability of Intercept (LPI) to protect aircraft carrier

JPALS supports landing ashore and ALL PHASES of flight aboard ship

Landing Solution - JPALS

COMSEC and "Featureless" Spread Spectrum protect the signals

Inertial Navigation System data used to compensate for ship's motion

MCS Ship Integration

J-UCAS Air Operations Challenges

Interoperability with Manned Aircraft: Concept

Supportability by Design

Support Asset Volume

- Minimized unique SE
- Maximize common SE
- Folding wings decrease AV spot factor

Less Volume than Comparable Manned Aircraft

Affordability Objectives

- Ease of Maintenance
- Technology Enabled Maintainers
- Realistic Simulation

 Based Virtual Training Environment

Lower O&S \$ than F/A-18C

Sortie Generation & Deck Ops

- Rapid Turn Time
- Integrated Vehicle Health Management
- Autonomic Logistics Support Concepts
- Daily Access Without LO Restoration

Logistics / Sustainment Personnel & Training

- Combined Hands On & Virtual Training
- Operational Use When Not Deployed
- Training & Op Exercises
- Logistics Assessment
- "Autonomic" Support System

Reduction In Manning over F/A-18C

J-UCAS Surveillance

Operational/System Architecture

Future Sensor Development

J-UCAS Surveillance Mission

- 1. SAR/GMTI
- **2. ESM**
- **3. EO/IR**

Questions for experimentation:

- Distributed control of the onboard sensor
- Bandwidth requirements
- Integration of sensor apertures w/ penetrating J-UCAS
- Sensor fusion with ATR
- **ESM, AT3**
- Sensor-to-Shooter
- Autonomy in mission execution, mission planning

Conclusion

• J-UCAS Program

- Demonstrate technical feasibility for a sea-based J-UCAS
- Reduced acquisition costs and O&S cost
- A revolutionary system for the warfighter

Phase II moving ahead

- CCA Ops Demo Complete
- Funding Provided for two flight and system demonstrations
 - **≫** Boeing X-45CN
 - \rightarrow NGC X-47B
- Catapult launch and arrested landings to be conducted at shore-based facilities
- Controlled Taxi and simulated Deck Ops will be demoed at shore and aboard ship

Preparing to Stand up Joint Systems Management Office (JSMO) by October 1st