LESSONS FROM WIND TUNNEL MODELS MADE BY RAPID PROTOTYPING

Ehud Kroll
Faculty of Aerospace Engineering
Technion
Israel Institute of Technology
Technion City, Haifa 32000, Israel

Dror Artzi
Faculty of Aerospace Engineering
Technion
Israel Institute of Technology
Technion City, Haifa 32000, Israel

Aerospace Consulting
26 Hyarkon st. Haifa 34461 ISRAEL
www.dror-aero.com
Background

• Traditionally wind tunnel test models are made of metal by using 5-axis CNC milling process.
• The result is very accurate but very expensive model.
• Rapid Prototyping (RP) allows the fabrication of a physical object directly from the CAD model by using various materials, such as polymers.
• The lecture is about using Rapid Prototyping process for manufacturing of wind tunnel test models.
• The evaluation was done by using two models of students’ final-year projects: ILAS and CERBERUS UAVs (both are flying wing configuration).
Rapid Prototyping

• Building the model layer-by-layer, from the bottom up.
• We used PolyJet™ technology by Objet Geometries (Israel).
• 0.1 mm resolution in X-Y, 0.16μm layer thickness (Z resolution).
Advantages offered by the RP technology

- Cost
- Time
- Geometrical Complexity
- Weight
- Accuracy
- Surface Finish
- Small Parts and Details
- Movable Parts
Disadvantages of RP for wind tunnel models

- Strength and Stiffness
- Durability
- Stability
- Maximum Size
MODEL DESIGN

AERODYNAMIC CONSIDERATIONS

Tradeoff of several requirements such as:

– Cross section area of the available and economical wind tunnel.
– Actual size and shape of the aircraft to be evaluated.
– Actual performance (speed, Mach number) of the air vehicle.
– Similarity parameters.
– Reynolds number.
– Materials and production process of the model.
CERBERUS UAV WIND TUNNEL MODEL

First Iteration

Requirements:

– Design speed 0.7-0.8 Mach number

Therefore

– Use of transonic wind tunnel (where the compressible flow effects could be included)
1 : 40 Scale Model

- Too Small Model
- Excessively large “cut” in the aft part of the fuselage
CERBERUS UAV WIND TUNNEL MODEL

Second Iteration

Alternate Approach:

– Applied Similarity Parameters to correct the aerodynamic coefficients

– By considering the swept wing and the Mach number perpendicular to the wing, the following transformation can be used:

\[
M_n = M_\infty \cdot \cos \Lambda = 0.8 \cdot \cos 45^\circ = 0.56
\]

\[
\frac{C_{comp}}{C_{incomp}} = \frac{1}{\beta} = \frac{1}{\sqrt{1 - M_n^2}} = 1.2
\]

– Using the Subsonic Tunnel
1 : 22 Scale Model

600 mm
MODEL DESIGN

STRUCTURAL CONSIDERATIONS

- Use of rear-mounted sting-type strain-gage balance
- Fabrication limitation of RP machine for part size

ILAS model - four main parts: fuselage, nose section and two wings.
ILAS UAV model parts
CERBERUS UAV model parts

- Balance adaptor
- LH elevons
- Spoilers
- Nose section
- Fuselage
- LH stiffening plate
- LH wing
CERBERUS model with two reinforcing steel plates

Stiffening plates
CERBERUS

pitch and roll control surfaces (elevons)

Pitch & Roll are controlled by 4 Elevons
CERBERUS

yaw control surface (spoiler)

$\theta = 55^\circ$
$\theta = 45^\circ$
$\theta = 35^\circ$
$\theta = 25^\circ$

$\delta_s = 30^\circ$
$\delta_s = 15^\circ$
$\delta_s = 0^\circ$

Yaw is controlled by Forward Opening Inlay Spoilers.
CERBERUS Model
in the wind tunnel measurements

Pitch measurements Yaw measurements
TEST RESULTS
Comparison between the measured and calculated (linear) lift coefficients as a function of the angle of attack.

\[y = 3.6x + 0.095 \]
The measured lift coefficient as a function of the angle of attack;
\[C_{L_{\text{max}}} = 1.04 \text{ at } \alpha = 17.6^\circ. \]
Measured and calculated (quadratic) drag coefficient vs. lift coefficient

\[y = 0.119x^2 + 0.0129 \]
The wind tunnel test results showed very good compatibility with the theory and similarity to the analysis results.

After establishing the level of confidence and proving the adequacy of the RP model, several tests for the controllability of the air vehicle have been conducted.
Measured elevator’s influence

\[C_m \text{ Vs } \delta_e \]

\[C_{m\delta_e} \approx -0.2[1/\text{rad}] \]
Spoiler at hinge angle of 35 deg produces the highest yawing moment, while having a low rolling moment.
CONCLUSIONS & RECOMMENDATIONS

• Significant cost savings compared to traditional CNC machining of metal models.
• Significant time savings for the model production.
• Aerodynamic data of acceptable quality can be collected from RP models.
• Using RP techniques for production of wind tunnel models is adequate and sufficient for obtaining quick and accurate enough results.
• RP can definitely be used for quick, low-cost performance evaluation of new air vehicles and for verification of analyses results.
Questions ?
Small, detailed spoilers fabricated for the wind tunnel testing

Small and Accurate elements